Abstract
We theoretically and numerically investigate magnetophotonic microresonators formed by a magnetic layer sandwiched between two reflective multilayers with different layer arrangements. Quasicrystals with the Fibonacci layer sequence and aperiodic structures with the Thue–Morse sequence are all compared to the conventional photonic crystal Bragg microresonators. The magneto-optical spectral properties of such magnetophotonic structures are completely different from each other and from a uniform magnetic film. In multilayered structures of various order types, microresonator modes are excited. The feature of multilayered structures with arrangements different from a periodic one is that they support the excitation of the multiple microresonator modes in a limited visible and near-infrared spectral range. The wavelengths of the two microresonator modes in a regular photonic crystal differ by more than one octave. This feature of the quasi-crystalline and aperiodic microresonators is important for applications in devices based on the Faraday effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.