Abstract

Currently there is an urgent need for multi-mycotoxin detection methods due to the co-occurrence of multiple mycotoxins in food raw materials and their augmented toxicity. Herein, a magneto-controlled aptasensor has been developed for simultaneous electrochemical detection of ochratoxin A (OTA) and fumonisin B1 (FB1), two typical mycotoxins found in food crops world-wide. This aptasensor was designed using the high specificity between the target and aptamer with heavy CdTe or PbS quantum dots (QDs) coated silica as labels and the complementary DNA functionalized magnetic beads as capture probes. In presence of targets, the aptamer preferred to form the target-aptamer binding which forced the partial release of the preloaded labels from the magnetic beads. After a one-step incubation and a simple magnetic separation, the electrochemical signals of Cd2+ and Pb2+ dissolved from the reserved labels which had negative correlation with targets contents, was measured based on the difference of peak potentials. This aptasensor provided a wide detection range of 10pgmL−1 to 10ngmL−1 for OTA and 50pgmL−1 to 50ngmL−1 for FB1, and succeeded in real maize samples. This method provides a new avenue for high throughput screen of mycotoxins due to the advantages of simple instrument, low sample consumption, short assay times, and lower detection costs per assay. Moreover, it could be readily expanded for the simultaneous detection of a large panel of mycotoxins by using different metal sulfide QDs when their specific aptamers are available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.