Abstract

The field of nanotechnology had enormous developments, resulting in new methods for the controlled synthesis of a wide variety of nanoscale materials with unique properties. Efficient methods such as thermal decomposition for efficient size control have been developed in recent years for the synthesis of oleic acid (OA)-coated magnetite (Fe3O4) nanoparticles (MNP-OA). These nanostructures can be a source of pollution when emitted in the aquatic environment and could be accumulated by vulnerable marine species such as crustaceans. In this work, we synthesized and characterized MNP-OA of three different diameters (5, 8, and 12nm) by thermal decomposition. These nanoparticles were remarkably stable after treatment with high affinity iron chelators (calcein, fluorescent desferrioxamine, and fluorescent apotransferrin); however, they displayed pro-oxidant activity after being challenged with ascorbate under two physiological buffers. Free or nanoparticle iron displayed low toxicity to four types of hepatopancreatic cells (E, R, F, and B) of the mangrove crab Ucides cordatus; however, they were promptly bioavailable, posing the risk of ecosystem disruption due to the release of excess nutrients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.