Abstract

The study examines the role of magnetite (1–150 mg/L) at the interface of Bacillus subtilis-electrode under poised-condition (-0.2 V) for product-formation and catalytic-conduct with the relative-gene-expression encoding lactate dehydrogenase (lctE), pyruvate dehydrogenase (pdhA), acetate kinase (ackA), pyruvate carboxylase (pycA), and NADH dehydrogenase (ndh). The magnetite load of 25 mg/L showed positive influence on acidogenesis resulting in H2 production of 264.7 mol/mL and fatty acids synthesis of 3.6 g/L. Additionally, this condition showed higher succinic acid productivity (2.8 g/L) which correlates with the upregulated pycA gene and fumarate to succinate redox peak. With 10 mg/L loading, production of higher acetic acid (3.1 g/L) along with H2 (181.6 mol/mL) was depicted wherein upregulation of pdhA, ackA and ndh genes was observed. In absence of magnetite, lctE gene was upregulated which resulted higher lactate production. The findings suggest that the mutual-interactions between magnetite-active sites of specific enzymes enhances the biocatalytic activity triggering product-formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.