Abstract

This work presents results for the electronic structure, magnetic properties, and electrical resistivity of the semiconductor SnTe doped with 3d transition metals V and Cr. From the standpoint of potential application in spintronics, we look for half-metallic states and analyze their properties in both rock salt and zinc blende structures using ab initio electronic structure methods. In both cases, it is the Sn-sublattice that is doped with the transition metals, as has been the case with experiments performed so far. We find four half-metallic compounds at their optimized cell volumes. Results of exchange interactions and the Curie temperature are presented and analyzed for all the relevant cases. Resistivity calculation based on Kubo-Greenwood formalism shows that the resistivities of these alloys due to transition metal doping of the Sn-sublattice may vary, in most cases, from typical liquid metal or metallic glass value to 2–3 times higher. 25% V-doping of the Sn-sublattice in the rock salt structure gives a very high resistivity, which can be traced to high values of the lattice parameter resulting in drastically reduced hopping or diffusivity of the states at the Fermi level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call