Abstract

For a class of frustrated antiferromagnetic spin lattices (in particular, the square-kagomé and kagomé lattices) we discuss the impact of recently discovered exact eigenstates on the stability of the lattice against distortions. These eigenstates consist of independent localized magnons embedded in a ferromagnetic environment and become ground states in high magnetic fields. For appropriate lattice distortions fitting to the structure of the localized magnons the lowering of magnetic energy can be calculated exactly and is proportional to the displacement of atoms leading to a spin-Peierls lattice instability. Since these localized states are present only for high magnetic fields, this instability might be driven by magnetic-field. The hysteresis of the spin-Peierls transition is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.