Abstract

Self-assembly of building blocks for constructing multifunctional materials has opened prospects for sensing applications in the biomedical fields. In particular, the combination of aptamer with DNA assembly-based nanotechnology has greatly improved the performance of cancer cell detection. Nevertheless, the cancer cell detection strategies of integrating aptamer with protein are relatively sparse. So we have developed a self-assembled aptamer method to realize the efficient capture and rapid detection of cancer cells by ingeniously combining aptamer modified magnetic nanoparticles as capture nanoprobes with self-assembled aptamer/protein hybrid probes (SAPPs) as signal amplification probes. By merely mixing the component materials together simultaneously, the SAPPs, integrating aptamer for cancer cell recognition with protein for amplifying signal, were fabricated by DNA-governed one-step assembly. In addition, the SAPPs-based method exhibits efficient capture, rapid (about 45 min) and specific CCRF-CEM detection performance, with limits of detection down to 75 cells/mL in buffer and 200 cells/mL in whole blood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call