Abstract

Cancer cell count in the blood of cancer patients is extremely low. If these cells are easily detectable, cancer diagnosis may be possible by simply using a blood test, thus reducing patient burden. This study aimed to develop a cancer detection device by combining a microfilter that can be dynamically deformed and a nucleic acid aptamer that has a specific binding ability to cancer cells for easy detection. The cancer detection device was fabricated by photolithography, electroforming, and three-dimensional printing. The cancer cell detection ability of the fabricated device was evaluated using 1 mL of blood samples spiked with different concentrations of cancer cells. The lowest concentration of cancer cells in the blood was 5 cancer cells/1 mL blood. The fabricated microfilters specifically detected cancer cells in the blood successfully at exceedingly low concentrations. Moreover, the cancer detection experiment results using human whole blood revealed that cancer detection could be performed with higher accuracy using the fabricated cancer detection device compared to pre-existing cancer detection equipment (e.g., CellSearch system, Veridex). These findings provide important insights into the use of cancer cells in the blood as a diagnostic approach for cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call