Abstract

A tunable terahertz (THz) isolator based on a periodically structured semiconductor magneto plasmonics is proposed. The unique photonic band-gap and one-way transmission property of this structure with different magnetic fields and temperature are investigated in the THz regime. The numerical results show the proposed isolator has a bandwidth of 80 GHz with the maximum isolation of higher than 90 dB and a low insertion loss of 5%. The central operating frequency of this isolator can be broadly tuned from 1.4 to 0.9 THz by changing the external magnetic field from 0.6 to 1.6 Tesla at 195 K. This low-loss high isolation broadband nonreciprocal THz transmission mechanism has great potential applications in promoting the performances of THz application systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.