Abstract

The development of effective biological scaffold materials for tissue engineering and regenerative medicine applications hinges on the ability to present precise environmental cues to specific cell populations to guide their position and function. Natural extracellular matrices have an ordered nano-scale structure that can modulate cell behaviors critical for developmental control, including directional cell motility. Here we describe a method for fabricating fibrin gels with defined architecture on the nanometer scale in which magnetic forces are used to position thrombin-coated magnetic micro-beads in a defined 2-dimensional array and thereby guide the self-assembly of fibrin fibrils through catalytic cleavage of soluble fibrinogen substrate. Time-lapse and confocal microscopy confirmed that fibrin fibrils nucleate near the surface of the thrombin-coated beads and extend out in a radial direction to form these gels. When controlled magnetic fields were used to position the beads in hexagonal arrays, the fibrin nano-fibrils that polymerized from the beads oriented preferentially along the bead--bead axes in a geodesic (minimal path) pattern. These biocompatible scaffolds supported adhesion and spreading of human microvascular endothelial cells, which exhibited co-alignment of internal actin stress fibers with underlying fibrin nano-fibrils within some membrane extensions at the cell periphery. This magnetically-guided, biologically-inspired microfabrication system is unique in that large scaffolds may be formed with little starting material, and thus it may be useful for in vivo tissue engineering applications in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call