Abstract

Concentrated active agents can exhibit turbulent-like flows reminiscent of hydrodynamic turbulence. Despite its importance, the influence of external fields on active turbulence remains largely unexplored. Here we demonstrate the ability to control the swimming direction and active turbulence of Bacillus subtilis bacteria using external magnetic fields. The control mechanism leverages the magnetic torque experienced by the non-magnetic, rod-shaped bacteria in a magnetizable medium containing superparamagnetic nanoparticles. This allows aligning individual bacteria with the magnetic field, leading to a nematically aligned state over millimetric scales with minute transverse undulations and flows. Turning off the field releases the alignment constraint, leading to directly observable hydrodynamic instability of the dipole pushers. Our theoretical model predicts the intrinsic length scale of this instability, independent of the magnetic field, and provides a quantitative control strategy. Our findings suggest that magnetic fields and torques can be excellent tools for controlling non-equilibrium phase transitions in active systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.