Abstract

In this paper we show that by applying a perpendicular magnetic field to a quantum cascade structure it is possible to enhance the gain of different optical transitions. The combination of magnetic confinement with a broadband, cutoff-free optical resonator allows the demonstration of laser action over a large bandwidth, from 733 GHz to 1.38 THz together with the emission at 3.2 THz. A different lasing scheme is revealed that does not rely on resonant tunneling as the main injection mechanism. In combination with the magnetically enhanced gain laser emission at 1 THz is observed up to a temperature of 115 K, which corresponds to a ratio kBT/hν=2.3 between the lattice thermal energy and the laser photon energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call