Abstract

The quantum cascade laser is a new light source based on resonant tunnelling and optical transitions between quantised conduction band states. In these semiconductor devices the principles of operation arise from the quantum engineering of electronic energy levels and tailoring of their wavefunctions. In recent years the performance of these devices has improved markedly and this semiconductor technology is now an attractive choice for the fabrication of mid-far infrared lasers in a very wide spectral range (3–80 μm). At present, quantum cascade lasers are capable of continuous-wave room temperature operation and can deliver 200–300 mW of average power (at λ∼9 μm) operating on a Peltier cooler. To cite this article: C. Sirtori, J. Nagle, C. R. Physique 4 (2003).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.