Abstract

The magnetization processes of the spin-3/2 antiferromagnet LiInCr4O8 comprising a "breathing" pyrochlore lattice, which is an alternating array of small and large tetrahedra, are studied under ultrahigh magnetic fields of up to 130 T using state-of-the-art pulsed magnets. A half magnetization plateau is observed above 90 T to 130 T, suggesting that LiInCr4O8 has a strong spin-lattice coupling, similar to conventional chromium spinel oxides. The magnetization of LiGa0.125In0.875Cr4O8, in which the structural and magnetic transitions at low temperatures have been completely suppressed, shows a sudden increase above 13 T, indicating that a spin gap of 2.2 meV exists between a tetramer singlet ground state and an excited state with total spin 1, with the latter being stabilized by the application of a magnetic field. The breathing pyrochlore antiferromagnet is found to be a unique frustrated system with strong spin-lattice coupling and bond alternation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.