Abstract
The trigonal compound EuMg2Bi2 has recently been discussed in terms of its topological band properties. These are intertwined with its magnetic properties. Here detailed studies of the magnetic, thermal, and electronic transport properties of EuMg2Bi2 single crystals are presented. The Eu{+2} spins-7/2 in EuMg2Bi2 exhibit an antiferromagnetic (AFM) transition at a temperature TN = 6.7 K, as previously reported. By analyzing the anisotropic magnetic susceptibility chi data below TN in terms of molecular-field theory (MFT), the AFM structure is inferred to be a c-axis helix, where the ordered moments in the hexagonal ab-plane layers are aligned ferromagnetically in the ab plane with a turn angle between the moments in adjacent moment planes along the c axis of about 120 deg. The magnetic heat capacity exhibits a lambda anomaly at TN with evidence of dynamic short-range magnetic fluctuations both above and below TN. The high-T limit of the magnetic entropy is close to the theoretical value for spins-7/2. The in-plane electrical resistivity rho(T) data indicate metallic character with a mild and disorder-sensitive upturn below Tmin = 23 K. An anomalous rapid drop in rho(T) on cooling below TN as found in zero field is replaced by a two-step decrease in magnetic fields. The rho(T) measurements also reveal an additional transition below TN in applied fields of unknown origin that is not observed in the other measurements and may be associated with an incommensurate to commensurate AFM transition. The dependence of TN on the c-axis magnetic field Hperp was derived from the field-dependent chi(T), Cp(T), and rho(T) measurements. This TN(Hperp) was found to be consistent with the prediction of MFT for a c-axis helix with S = 7/2 and was used to generate a phase diagram in the Hperp-T plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.