Abstract

Magnetic excitations in ferromagnetic systems with a noncollinear ground-state magnetization experience a fictitious magnetic field due to the equilibrium magnetic texture. Here, we investigate how such fictitious fields lead to thermal Hall effects in two-dimensional insulating magnets in which the magnetic texture is caused by spin-orbit interaction. Besides the well-known geometric texture contribution to the fictitious magnetic field in such systems, there exists also an equally important contribution due to the original spin-orbit term in the free energy. We consider the different possible ground states in the phase diagram of a two-dimensional ferromagnet with spin-orbit interaction: the spiral state and the skyrmion lattice, and find that thermal Hall effects can occur in certain domain walls as well as the skyrmion lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.