Abstract
The coupling analysis of the magnetic field and temperature field of a multi-drum dual-coil magnetorheological (MR) brake is presented in this article. Firstly, the structure of the multi-drum dual-coil MR brake is introduced, and a prototype is manufactured. Thermal analysis of the designed brake is carried out, and a torque correction factor is proposed in order to reduce the error between simulation and experimental results. Then, a coupling analysis model of the magnetic field and temperature is established to study the temperature analysis of the brake under steady-state and transient condition. Simulation results show that the allowable slip power in steady state is 23.68 W. The highest temperature occurs in the fluid gap, and the lowest temperature occurs at the shaft. Under the transient state, the brake can work for about 1200 s under 75.08 W slip power. Furthermore, the temperature characteristics of MR brake under the normal braking, emergency braking, and intermittent braking have been studied. An experimental platform is built to study the torque and temperature characteristics. Results show that the simulated temperature is in good agreement with the experiments, indicating that the proposed magnetic-temperature coupling model can accurately simulate the temperature characteristics of the MR brake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.