Abstract

We study the band structure of graphene's Dirac-Weyl quasiparticles in a one-dimensional magnetic superlattice formed by a periodic sequence of alternating magnetic barriers. The spectrum and the nature of the states strongly depend on the conserved longitudinal momentum and on the barrier width. At the center of the superlattice Brillouin zone we find new Dirac points at finite energies where the dispersion is highly anisotropic, in contrast to the dispersion close to the neutrality point which remains isotropic. This finding suggests the possibility of collimating Dirac-Weyl quasiparticles by tuning the doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.