Abstract
We study the energy band structure of magnetic graphene superlattices with delta-function magnetic barriers and zero average magnetic field. The dispersion relation obtained using the T-matrix approach shows the emergence of an infinite number of Dirac-like points at finite energies, while the original Dirac point is still located at the same place as that for pristine graphene. The carrier group velocity at the original Dirac point is isotropically renormalized, but at finite energy Dirac points it is generally anisotropic. An asymmetry in the width between the wells and the barriers of the periodic potential induces a shift of the original Dirac point in the zero-energy plane, keeping the velocity renormalization isotropic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.