Abstract
Energy and diffusive mass transport associated with the thermospheric circulation are considered in a self-consistent, though mathematically relatively simple form to describe in a three-dimensional two-constituent model magnetic storm characteristics in composition (N2, O, and He), temperature and mass-density. It is shown that during disturbed conditions the latitudinal variations of composition and gas temperature T sub g reflect the local nature of the magnetic storm heat input assumed to be primarily confined to the auroral zones. Thereby T sub g and N2 increase, He decreases and O remains constant through the auroral zones at exospheric heights (due to the superposition of temperature and diffusion effects) in agreement with OGO-6 mass spectrometer measurements. In contrast, the magnetic storm response in the total mass density is characterized by a strong world-wide component and a relatively insignificant increase toward the poles with the density peak occurring between two (poles) and eight (equator) hours after the maximum energy input, in substantial agreement with satellite drag data.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have