Abstract

The mechanical environment of a cell is not constant. This dynamic behavior is exceedingly difficult to capture in (synthetic) in vitro matrices. This paper describes a novel, highly adaptive hybrid hydrogel composed of magnetically sensitive magnetite nanorods and a stress-responsive synthetic matrix. Nanorod rearrangement after application of (small) magnetic fields induces strain in the network, which results in a strong (over 10-fold) stiffening even at minimal (2.5 wt %) nanorod concentrations. Moreover, the stiffening mechanism yields a fast and fully reversible response. In the manuscript, we quantitatively analyze that forces generated by the particles are comparable to cellular forces. We demonstrate the value of magnetic stiffening in a 3D MCF10A epithelial cell experiment, where simply culturing on top of a permanent magnet gives rise to changes in the cell morphology. This work shows that our hydrogels are uniquely suited as 3D cell culture systems with on-demand adaptive mechanical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.