Abstract

The utilization of spent bleaching earth (SBE)-based materials for adsorption of pollutants from water and wastewater has received growing attention. In this work, a comparative study of magnetic spent bleaching earth carbon (Mag-SBE@C) and spent bleaching earth carbon (SBE@C) was performed to remove tetracycline hydrochloride (TCH) from aqueous solutions. Mag-SBE@C exhibits the larger adsorption capacity (0.238 mmol/g) obtained by the Langmuir model than the original SBE@C (0.150 mmol/g). The adsorption process fits well with the pseudo second-order model and is found to be exothermic (ΔH0 < 0) and spontaneous (ΔG0 < 0). The optimal adsorption conditions (Mag-SBE@C dose 2.217 g/L, initial TCH concentration 0.113 mmol/L, initial solution pH 6.533) predicted by the response surface methodology (RSM) are consistent with the actual verification results. The inhibition extents of coexisting cations are ranked in a decline: Al3+ > Cu2+ > Fe3+ > Mg2+ > K+ > Na+. Various characterization results indicate that the adsorption mechanism of TCH by Mag-SBE@C likely includes the π-π interactions, hydrogen bonding, electrostatic interactions, π-cations interactions, FeN covalent bonding, and changes in physical and chemical properties. Mag-SBE@C is easily solid-liquid separated using magnetic field, and can be potentially reused for 13 times before completely losing its activity, exhibiting great potential to antibiotics elimination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.