Abstract
To determine the relationship between proton magnetic resonance spectroscopy ((1)H MRS) metabolites and β-amyloid (Aβ) load and the effects of Aβ load on the association between (1)H MRS metabolites and cognitive function in cognitively normal older adults. We studied 311 cognitively normal older adults who participated in the population-based Mayo Clinic Study of Aging from January 2009 through September 2010. Participants underwent (11)C-Pittsburgh compound B (PiB) PET, (1)H MRS from the posterior cingulate gyri, and neuropsychometric testing to assess memory, attention/executive, language, and visual-spatial domain functions within 6 months. Partial Spearman rank order correlations were adjusted for age, sex, and education. Higher PiB retention was associated with abnormal elevations in myoinositol (mI)/creatine (Cr) (partial r(s) = 0.17; p = 0.003) and choline (Cho)/Cr (partial r(s) = 0.13; p = 0.022) ratios. Higher Cho/Cr was associated with worse performance on Auditory Verbal Learning Test Delayed Recall (partial r(s) = -0.12; p = 0.04), Trail Making Test Part B (partial r(s) = 0.12; p = 0.04), Wechsler Adult Intelligence Scale-Revised (WAIS-R) Digit Symbol (partial r(s) = -0.18; p < 0.01), and WAIS-R Block Design (partial r(s) = -0.12; p = 0.03). Associations between (1)H MRS metabolites and cognitive function were not different among participants with high vs low PiB retention. In cognitively normal older adults, the (1)H MRS metabolite ratios mI/Cr and Cho/Cr are associated with the preclinical pathologic processes in the Alzheimer disease cascade. Higher Cho/Cr is associated with worse performance on domain-specific cognitive tests independent of Aβ load, suggesting that Cho/Cr elevation may also be dependent on other preclinical dementia pathologies characterized by Cho/Cr elevation such as Lewy body or ischemic vascular disease in addition to Aβ load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.