Abstract
Current routine MRI examinations rely on the acquisition of qualitative images that have a contrast “weighted” for a mixture of (magnetic) tissue properties. Recently, a novel approach was introduced, namely MR Fingerprinting (MRF) with a completely different approach to data acquisition, post-processing and visualization. Instead of using a repeated, serial acquisition of data for the characterization of individual parameters of interest, MRF uses a pseudo randomized acquisition that causes the signals from different tissues to have a unique signal evolution or ‘fingerprint’ that is simultaneously a function of the multiple material properties under investigation. The processing after acquisition involves a pattern recognition algorithm to match the fingerprints to a predefined dictionary of predicted signal evolutions. These can then be translated into quantitative maps of the magnetic parameters of interest. MR Fingerprinting (MRF) is a technique that could theoretically be applied to most traditional qualitative MRI methods and replaces them with acquisition of truly quantitative tissue measures. MRF is, thereby, expected to be much more accurate and reproducible than traditional MRI and should improve multi-center studies and significantly reduce reader bias when diagnostic imaging is performed. Key Points • MR fingerprinting (MRF) is a new approach to data acquisition, post-processing and visualization.• MRF provides highly accurate quantitative maps of T1, T2, proton density, diffusion.• MRF may offer multiparametric imaging with high reproducibility, and high potential for multicenter/ multivendor studies.
Highlights
Current routine magnetic resonance imaging (MRI) examinations rely on the acquisition of qualitative images that have a contrast “weighted” for a mixture of tissue properties
Magnetic resonance (MR) techniques such as MR spectroscopy and MRI are widely used throughout physics, biology and medicine because of their ability to generate detailed information about numerous important material or tissue properties, including those reflective of many common disease states [1, 2]
Tissues in the human body can be distinguished with magnetic resonance imaging (MRI) depending on their MR parameters, such as the longitudinal T1 relaxation, the transverse T2 relaxation, and the proton density (PD)
Summary
Current routine MRI examinations rely on the acquisition of qualitative images that have a contrast “weighted” for a mixture of (magnetic) tissue properties. MR fingerprinting (MRF) is a new approach to data acquisition, post-processing and visualization. MRF provides highly accurate quantitative maps of T1, T2, proton density, diffusion.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have