Abstract
Radiation-induced optic neuropathy (RION) is a devastating late complication of radiotherapy. However, research on the imaging performance of RION is not sufficient. The aim of this study was to investigate the performance of magnetic resonance diffusion tensor imaging (DTI) early after injury of the optic nerve of rhesus monkeys by a single-dose/fractionation-scheme of stereotactic radiosurgery (SRS). The intraorbital optic nerve contour of 5rhesus monkeys was acquired by magnetic resonance imaging (MRI). Then, the unilateral intraorbital optic nerves of 5rhesus monkeys were injured by gamma knife surgery (GKS) with a single-dose/fractionation scheme (marginal dose of 15Gy, 50% isodose curve). DTI was performed before the irradiation and 1week, 2weeks, 4weeks, and 24weeks after injury to obtain the cross-sectional area, and the fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD) and radial diffusivity (RD) values. The cross-sectional area of the injured optic nerve exhibited significant atrophy 24weeks after SRS. FA declined 1week after injury; this value then increased slightly but remained lower than before injury (P<0.05). AD began to decline in the 2weeks after injury and gradually disappeared (P<0.05). SRS with a single-dose/fractionation scheme (marginal dose of 15Gy, 50% isodose curve) on the unilateral intraorbital optic nerve can induce RION. DTI can detect RION at an early stage. FA and AD are useful indicators for RION diagnosis. In the early stage, the primary site of RION may be the vascular endothelium.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have