Abstract

Current density imaging (CDI) was developed with the aim of determining the three-dimensional distribution of externally applied electric current pathways inside a conductive medium, using measurements of magnetic flux density [Formula: see text] data. While the B field may be measurable using instruments such as a magnetometer, in magnetic resonance current density imaging (MR-CDI), an MRI scanner is used to measure the magnetic flux density data induced by current flow. In MR-CDI, the object must be rotated inside the MRI machine to find all three components of the B-field, as only the component of B parallel to the magnet main magnetic field can be measured. In principle, once the all three components of the B field have been obtained from an MR imaging experiment, the current density distribution [Formula: see text] can be reconstructed from Ampere's law [Formula: see text]. However, the need to rotate the object within the MRI scanner limits the usability of this technique. To overcome this problem, researchers have investigated the current density reconstruction problem using only one component of the magnetic flux density Bq, where q = x, y, z. In this chapter, we discuss numerical algorithms developed to reconstruct the distribution of J information from the measured B-field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call