Abstract
With decreasing particle size, different mechanisms dominate the thermally activated magnetization reversal in ferromagnetic particles. We investigate some of these mechanisms for the case of a classical Heisenberg spin chain driven by an external magnetic field. For sufficiently small system size the magnetic moments rotate coherently. With increasing size a crossover to a reversal due to soliton-antisoliton nucleation sets in. For even larger systems many of these soliton-antisoliton pairs nucleate at the same time. These effects give rise to a complex size dependence of the energy barriers and characteristic time scales of the relaxation. We study these quantities using Monte Carlo simulations as well as a direct integration of the Landau-Lifshitz-Gilbert equation of motion with Langevin dynamics and we compare our results with asymptotic solutions for the escape rate following from the Fokker-Planck equation. Also, we investigate the crossover from coherent rotation to soliton-antisoliton nucleation and multidroplet nucleation, especially its dependence on the system size, the external field, and the anisotropy of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.