Abstract

In this work, we discuss the relaxation of the magnetic moments in a novel carbon nanotube (CNT)-based nanocomposite synthesized by using chemical vapor deposition process. The material consists of a matrix of CNT filled by Fe-based nanoparticles. This structure is seen clearly by scanning and transmission. X-ray diffraction and Raman spectroscopy are used to detect the predominant Fe3C phase and the CNT presence in the sample, respectively. The results obtained from both hysteresis cycles, M(H), and zero field cooled-field cooled (ZFC-FC) measurements confirm that the material is characterized by both a strong ferromagnetic exchange and random magnetic anisotropy. For the first time, we have been able to fit the magnetic relaxation data, M(t), by using both the two distributions of nanoparticles data deduced from the ZFC-FC data and the temperature dependence of the magnetic anisotropy obtained from the law of approach to saturation in random magnets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.