Abstract
The fabrication, characterization, and therapy efficiency of a noncovalent-bonded hydrogel network, which is assembled by utilizing cucurbit[7]uril as a supramolecular linker to "stick" superparamagnetic γ-Fe2 O3 nanoparticles onto the polymer backbone of catechol-functionalized chitosan are described. The unique barrel-shaped structure of cucurbit[7]uril not only facilitates host-guest recognition with the catechol derivatives, but also forms robust electrostatic interactions between its carbonyl portals and the γ-Fe2 O3 nanoparticles in a supramolecular manner, which leaves the physical and chemical properties of the nanoparticles intact. The γ-Fe2 O3 nanoparticles display vibrational movement and heat generation under an alternating magnetic field, endowing the formed hybrid supramolecular hydrogel with both thermo- and chemotherapy modalities, which are demonstrated both in vitro and in vivo. Here, a facile strategy is introduced to construct noncovalent interactions between a polymer matrix and the incorporated nanoparticles, which is amendable to a wide range of biomedical and industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.