Abstract

The evolutionary process of magnetic reconnection under solar coronal conditions is investigated with our recently developed 2.5D adaptive mesh refinement (AMR) resistive magneto hydrodynamics (MHD) model. We reveal the successive fragmentation and merging of plasmoids in a long-thin current sheet with Lundquist number Rm = 5.0 × 104. It is found that several big magnetic islands are formed eventually, with many slow-mode shocks bounding around the outflow regions. The multi-scale hierarchical-like structures of the magnetic reconnection are well resolved by the model and the AMR technique of the model can capture many fine pictures (e.g., the near-singular diffusion regions) of the development and simultaneously it can save a great deal of computing resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call