Abstract

A new algorithm is presented for the computation of two-dimensional magnetic reconnection in plasmas. Both resistive magnetohydrodynamic (MHD) and two-fluid models are considered. It has been implemented on several parallel platforms and shows good scalability up to 32 CPUs for reasonable problem sizes. A fixed, non-uniform rectangular mesh is used to resolve the different spatial scales in the reconnection problem. The resistive MHD version uses an implicit/explicit hybrid method, while the two-fluid version uses an alternating-direction implicit (ADI) method with high-order artificial dissipation. The technique has proven useful for comparing several different theories of collisional and collisionless reconnection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call