Abstract

Transport and separation of magnetic beads are important in “lab on a chip” environments for biotechnological applications. One possible solution for this is the on-off ratchet concept. An asymmetric magnetic potential and Brownian motion of magnetic beads are required for such a ratchet. The asymmetric magnetic potential is achieved by combining an external magnetic field with a spatially periodic array of conducting lines. In this work finite element method simulations are carried out to design this asymmetric potential and to evaluate transport rates. Furthermore, experiments are carried out so as to compare to the simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call