Abstract
Co-ferrite films were prepared using pulsed laser deposition with both post-annealing and in situ heating processes. Magnetic properties of these films were studied in the function of temperature, film thickness, and substrate. The films using post-annealing processes exhibited isotropic microstructure, and the coercivity showed no obvious magnetic anisotropy and no strong dependence on film thickness. Co-ferrite films using in situ heating exhibited (111) highly textured structure and possessed perpendicular anisotropy as well as large coercivity. The preferential texture and magnetic anisotropy were closely associated with substrate temperature and thickness. Perpendicular Hc over 12.5 kOe was obtained in the 33 nm Co-ferrite film deposited on single crystal quartz substrate at 550°C. The high coercivity and perpendicular coercivity may be attributed to the nanocrystalline grain, textured orientation, and large residual strain in these films since large residual strain may induce strong stress anisotropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.