Abstract

Hexaferrites have become massively important materials commercially and technologically, accounting for the bulk of total magnetic materials manufactured globally, with a multitude of uses and applications. There is currently increasing interest in composite materials containing hexaferrite fibers. It had been predicted that properties such as thermal, magnetic, electrical, and optical behavior will be enhanced in material in fibrous form, because a continuous fine fiber can be considered as effectively one dimensional, and does not behave as a homogeneously distributed solid. Aligned Co2Z (Ba3Co2Fe24O41) hexaferrite microfibers were found to have high magnetization values in all orientations and low coercivity. However, unlike the uniaxial M ferrite fibers previously reported, the ferroxplana Co2Z fibers do not show any significant alignment affects with direction of applied field. This is attributed to the microstructure of these fibers, in which the hexagonal plates are stacked and oriented parallel to the fiber axis, counteracting the expected effects of fiber alignment on measured magnetic saturation (Ms) values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.