Abstract

Composite materials and structures are increasingly being applied in aerospace, marine, and wind power industries, as well as in commercial products. One main reason for the scientific interest in composite materials is their tailorable mechanical properties. However, because of the fiber-direction-dependent nature of its physical and mechanical properties, composite material’s property and failure behaviors are usually complex, typically involving various mechanisms depending on applications. Nondestructive testing plays a key role during composite fabrication and maintenance in service. Among the variety of nondestructive techniques available, ultrasound phased array technique has emerged as a promising new approach. Unlike a conventional ultrasound single element transducer, an ultrasound phased array sensor can control and focus acoustic energy to the desired directions and locations. This heightened flexibility and sensitivity is essential given complex shape of modern composite structures. Despite such promise, understanding and application of ultrasound phased array technique is limited due to the anisotropic nature of composite materials, as well as its high acoustic attenuation. Attenuation and velocity dispersion are the two major challenges to the ultrasound evaluation of composite structures; these two factors complicate the control of phased array ultrasound propagation both theoretically and experimentally. This is especially true for thick high attenuation carbon fiber or glass fiber composite materials that have been widely applied in aerospace and wind turbine industries. In our study, ultrasound phased array technique was applied to increase the acoustic penetration power in high acoustic attenuation composite materials. First, ultrasound phased array signal in isotropic materials was studied to calibrate the probe parameters. Then for composite materials, the dependence of ultrasound field on the number of active elements, steering angles, beam focusing laws and on the characteristics of materials was analyzed and optimized through theoretical simulations and experimental evaluations. Results showed that the steering angles and the parameters of beam focusing laws might change the ultrasound beam intensity and uniformity, which had a significant influence on the sensitivity and resolution of the technique; the anisotropic properties of composite materials could distort the ultrasound beam, which made the calibration a necessary and important procedure during practical inspections. The influence of ultrasound frequency and beam angle were also quantitatively evaluated. The proposed research has the potential to apply ultrasound phased array technique to the detection of defects in composite materials and the evaluation of composite structural health. The study of the interaction between ultrasound and composite structures will open the window for the successful application of ultrasound phased array technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call