Abstract

Using the magnetic field data obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO), an investigation of magnetic power spectra in the undisturbed solar photosphere was performed. The results are as follows. 1) To get a reliable estimate of a magnetic power spectrum from the uniformly distributed quiet-sun magnetic flux, a sample pattern of no less than 300 pixels length should be adopted. With smaller patterns, energy on all observable scales might be overestimated. 2) For patterns of different magnetic intensity (e.g., a coronal hole, a quiet-sun area, an area of supergranulation), the magnetic power spectra in a range of (2.5-10) Mm exhibit very close spectral indices of about -1. The observed spectrum is more shallow than the Kolmogorov-type spectrum (with a slope of -5/3) and it differs from steep spectra of active regions. Such a shallow spectrum cannot be explained by the only direct Kolmogorov’s cascade, but it can imply a small-scale turbulent dynamo action in a wide range of scales: from tens of megameters down to at least 2.5 Mm. On smaller scales, the HMI/SDO data do not allow us to reliably derive the shape of the spectrum. 3) Data make it possible to conclude that a uniform mechanism of the small-scale turbulent dynamo is at work all over the solar surface outside active regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.