Abstract

The addition of exogenous materials is a commonly reported method for promoting the anaerobic digestion (AD) of sludge. However, most exogenous materials are nano-sized and their use encounters problems relating to a need for continuous replenishment, uncontrollability and non-recyclability. Here, magnetic porous microspheres (MPMs), which can be controlled by magnetic forces, were prepared and used to enhance the methanogenesis of sludge. It was observed that the MPMs were spherical particles with diameters of approximately 100 µm and had a stable macroporous hybrid structure of magnetic cores and polymeric shells. Furthermore, the MPMs had good magnetic properties and a strong solid–liquid interfacial electron transfer ability, suggesting that MPMs are excellent carriers for methanogenic consortia. Experimental results showed that the addition of MPMs increased methane production and the proportion of methane in biogas from AD by 100.0 % and 21.2 %, respectively, indicating the MPMs notably enhanced the methanogenesis of sludge. Analyses of variations in key enzyme activities and electron transfer in sludge samples with and without MPMs in AD revealed that the MPMs significantly enhanced the activities of key enzymes involved in hydrolysis, acidification and methanation. This was achieved mainly by enhancing the extracellular electron transfer to strengthen the proton motive force on the cell membrane, which provides more energy generation for methanogenic metabolism. A careful examination of the variations in the morphology, pore structure and magnetism of the MPMs before and after AD revealed that the MPMs increased the prevalence of many highly active anaerobes, and that this did not weaken the magnetic performance. The microbial community structure and metatranscriptomic analysis further indicated that the acetotrophic methanogens (i.e., Methanosaeta) were mainly in a free state and that CO2-reducing methanogens (i.e., Methanolinea and Methanobacterium) mainly adhered to the MPMs. The above synergistic metabolism led to efficient methanogenesis, which indicates that the MPMs optimised the spatial ecological niche of methanogenic consortia. These findings provide an important reference for the development of magnetic porous materials promoting AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.