Abstract

We consider the ground-state phase diagram of a one-dimensional spin-1/2 XXZ chain with a spatially modulated Dzyaloshinskii-Moriya interaction in the presence of an alternating magnetic field applied along the z[over ̂] axis. The model is studied using the continuum-limit bosonization approach and the finite system exact numerical technique. In the absence of a magnetic field, the ground-state phase diagram of the model includes, besides the ferromagnetic and gapless Luttinger-liquid phases, two gapped phases: the composite (C1) phase characterized by the coexistence of long-range-ordered (LRO) alternating dimerization and spin chirality patterns, and the composite (C2) phase characterized by, in addition to the coexisting spin dimerization and alternating chirality patterns, the presence of LRO antiferromagnetic order. In the case of mentioned composite gapped phases, and in the case of a uniform magnetic field, the commensurate-incommensurate type quantum phase transitions from a gapful phase into a gapless phase have been identified and described using the bosonization treatment and finite chain exact diagonalization studies. The upper critical magnetic field corresponding to the transition into a fully polarized state has been also determined. It has been shown that the very presence of a staggered component of the magnetic field vapes the composite (C1) in favor of the composite gapped (C2) phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.