Abstract

Magnetization and neutron diffraction measurements have been made on grunerite, Fe7Si8O22(OH)2, a monoclinic double-chain silicate with Fe2+ octahedral bands. The mineral orders antiferromagnetically at 47K into a collinear structure with a second transition at 8K to a canted arrangement. The magnetic susceptibility follows a Curie-Weiss Law above 120K, with a paramagnetic Curie temeprature ϑp=67K. Magnetization measurements below 47K indicate a spin-flop or metamagnetic transition in an applied field of about 12KOe. Powder neutron diffraction measurements between 8–45K reveal that all the Fe2+ spins within an octahedral band are ferromagnetically coupled parallel to the b axis, with each band antiferromagnetically coupled to neighboring bands. Below 8K Fe2+ spins at the M1 and M4 sites are canted away from the b axis, whereas those at the M2 and M3 sites are not significantly affected. The ordered Fe2+ moment on the M4 site is substantially lower than those on the other sites, most likely indicating strong covalency effects, i.e. considerable spin transfer to neighboring oxygen atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.