Abstract

We have carried out a systematic study on the effect of Cu doping on nuclear, magnetic, and dielectric properties in ${\mathrm{Mn}}_{1\ensuremath{-}x}{\mathrm{Cu}}_{x}{\mathrm{WO}}_{4}$ for $0\ensuremath{\le}x\ensuremath{\le}0.19$ by a synergic use of different techniques, viz, heat capacity, magnetization, dielectric, and neutron powder diffraction measurements. Via heat capacity and magnetization measurements we show that with increasing Cu concentration magnetic frustration decreases, which leads to the stabilization of commensurate magnetic ordering. This was further verified by temperature-dependent unit cell volume changes derived from neutron diffraction measurements which was modeled by the Gr\"uneisen approximation. Dielectric measurements show a low temperature phase transition below about 9--10 K. Furthermore, magnetic refinements reveal no changes below this transition indicating a possible spin-flop transition which is unique to the Cu doped system. From these combined studies we have constructed a magnetoelectric phase diagram of this compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.