Abstract
In this study, Ni@C nanoparticles were produced and used as an adsorbent for removing methyl orange (MO) from an aqueous solution. The sol-gel method was utilized for the preparation of the particles. The X-ray diffraction pattern and transmission electron microscopy (TEM) were utilized to determine the phase, morphology, and size. The electron micrograph indicated the coating of carbon over Ni having size between 43 and 94nm, and the Raman spectrum supported it. Among three, the maximum specific magnetization of the Ni@C nanocomposite was 55.78emu/g for the N7 sample. From the BET approach, specific surface areas of 2.29 × 105, 3.66 × 105, and 5.48 × 105 cm2/g as well as average pore size of 49.30, 37.25, and 35.27nm were observed for N5, N6, and N7, respectively. The Ni@C nanoparticles were magnetically separable and exhibited rapid adsorption of MO of different concentrations from their aqueous solutions. The N7 adsorbent displayed the highest MO adsorption capacity (~ 32mg·g-1) along with maintaining an adsorption capacity of 81% even after 5 cycles. Adsorption isotherm and kinetic analysis gave critical inputs toward the possible adsorption mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.