Abstract

Efficiently detecting diamide insecticides in environmental water is challenging due to their low concentrations and complex matrix interferences. In this study, we developed ionic liquids (ILs)-incorporated magnetic molecularly imprinted polymers (IL-MMIPs) for the detection of diamide insecticides, capitalizing on the advantages of ILs and quick magnetic separation through surface imprinting. Tetrachlorantraniliprole was used as the template, and a specific IL, 1-vinyl-3-ethylimidazolium hexafluorophosphate ([VEIm][PF6]), was employed as the functional monomer. Various synthesis conditions were investigated to optimize adsorption efficiency. The prepared IL-MMIPs were successfully employed as adsorbents in magnetic solid-phase extraction (MSPE) to selectively extract, separate, and quantify three types of diamide insecticides from water samples using HPLC-UV detection. Under optimal conditions, the analytical method achieved low limits of detection (0.69 ng mL−1, 0.64 ng mL−1, 0.59 ng mL−1 for cyantraniliprole, chlorantraniliprole and tetrachlorantraniliprole, respectively). The method also displayed a wide linear range (0.003–10 μg mL−1 for cyantraniliprole and chlorantraniliprole, and 0.004–10 μg mL−1 for tetrachlorantraniliprole, respectively) with satisfactory coefficients (R2≥0.9996), and low relative standard deviation (RSD≤2.55%). Additionally, extraction recoveries fell within the range of 79.4%–109%. The results clearly demonstrate that IL-MMIPs exhibit exceptional recognition and rebinding capabilities. The developed IL-MMIPs-MSPE-HPLC-UV method is straightforward and rapid, making it suitable for the detection and analysis of three kinds of diamide insecticides in environmental water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.