Abstract

The coexistence of multiple contaminates in the environment and food is of growing concern due to their extremely hazard as a well-known class I carcinogen, like aflatoxin B1 (AFB1) and benzo(α)pyrene (BaP). AFB1 and BaP are susceptible to coexistence in environmental water and edible oil, posing a significant potential risk to environmental monitoring and food safety. The remaining challenges in detecting multiple contaminates include unsatisfied sensitivity, insufficient targets selectivity, and interferences in complex matrices. Here, we developed dual-template magnetic molecularly imprinted polymers (DMMIPs) for selective extraction of dual targets in complex matrices from the environment and food. The DMMIPs were fabricated by surface imprinting with vinyl-functionalized Fe3O4 as carrier, 5,7-dimethoxycoumarin and pyrene as dummy templates, and methacrylamide as functional monomer. The DMMIPs showed excellent adsorption ability (12.73–15.80 mg/g), imprinting factors (2.01–2.58), and reusability of three adsorption-desorption cycles for AFB1 and BaP. The adsorption mechanism including hydrogen bond, electrostatic interaction and van der Waals force was confirmed by physical characterization and DFT calculation. Applying DMMIPs in magnetic solid phase extraction (MSPE) followed by high-performance liquid chromatography (HPLC) analysis enabled detection limits of 0.134 μg/L for AFB1 and 0.107 μg/L for BaP. Recovery rates for water and edible oil samples were recorded as 86.2%–110.3% with RSDs of 4.1%–11.9%. This approach demonstrates potential for simultaneous identification and extraction of multiple contaminants in environmental and food.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.