Abstract

Magnetic magnetite (Fe3O4) nanoparticles synthesized by chemical co-precipitation were characterized using XRD, TEM, SEM-EDX, FT-IR, ED-XRF, PPMS, point of zero charge (pHpzc) and surface area measurements. As-prepared Fe3O4 nanoparticles were successful for aqueous Cr6+ and Pb2+ removal. Batch adsorption experiments systematically investigated the influence of pH, temperature, contact time and adsorbate/adsorbent concentration on Cr6+ and Pb2+ adsorption. Maximum Cr6+ and Pb2+ removal occurred at pH 2.0 and 5.0, respectively. Sorption data fit pseudo-second order kinetics, indicating a chemical adsorption. The Freundlich, Langmuir, Redlich–Peterson, Toth, Radke and Sips adsorption isotherm models were applied to describe equilibrium data. The Sips and Langmuir models best described Cr6+ and Pb2+ adsorption on magnetite nanoparticles, respectively. The maximum Langmuir adsorption capacities were 34.87 (Cr6+) and 53.11 (Pb2+)mg/g at 45°C, respectively. Fe3O4 nanoparticles are promising potential adsorbents and exhibited remarkable reusability for metal ions removal in water and wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.