Abstract

Effects of a non-monotonically evolving external perturbation on a plasma, that is stable against tearing modes, are numerically investigated. It is found that for a magnetic island driven by an external single-cycle magnetic perturbation, the time constants during the phases of growth and decay are different. This difference in time constants causes a finite magnetic island to form even after the external perturbation is removed. Therefore, the saturation width of a magnetic island driven by a successive applications of an external single-cycle perturbation becomes larger than the maximum magnetic island width driven by a single application of that. For a rotating plasma, the background rotation is damped as the magnetic island grows due to an external perturbation [R. Fitzpatrick, Phys. Plasmas 5, 3325(1998)]. Therefore, for a rotating plasma, the driven magnetic island can enter an explosive growth stage due to successive applications of a single-cycle perturbation even with amplitude smaller than the critical value for the onset of the rapid growth in the case of a monotonically increasing or step-function type external perturbation. These features are important in explaining the explosive growth of magnetic islands and the onset of neoclassical tearing mode due to non-monotonically growing MHD phenomena such as sawtooth, fishbones and ELM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.