Abstract

Off-axis electron holography in the transmission electron microscope is used to record magnetic induction maps of closely spaced magnetite crystals in magnetotactic bacteria at room temperature and after cooling the sample using liquid nitrogen. The magnetic microstructure is related to the morphology and crystallography of the particles, and to interparticle interactions. At room temperature, the magnetic signal is dominated by interactions and shape anisotropy, with highly parallel and straight field lines following the axis of each chain of crystals closely. In contrast, at low temperature the magnetic induction undulates along the length of the chain. This behaviour may result from a competition between interparticle interactions and an easy axis of magnetisation that is no longer parallel to the chain axis. The quantitative nature of electron holography also allows the change in magnetisation in the crystals with temperature to be measured.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.