Abstract
Simple SummarySuperparamagnetic iron oxide nanoparticles (SPIO) have been shown to identify sentinel lymph nodes (SLNs) in patients with breast cancer. This study investigated whether a minimally invasive approach with MRI-LG after SPIO injection in the breast followed by a magnetic guided axillary ultrasound and core biopsy of the SLN (MagUS) could accurately stage the axilla. The study included not only patients planned for primary surgery but also patients with recurrent cancer after previous surgery, but also patients scheduled for neoadjuvant treatment (NAT). The latter underwent minimally invasive SLNB prior to treatment and had their SLN clipped; surgery in the axilla was performed after NAT. In 79 included patients, MagUS detected all patients with macrometastasis and performed comparably with surgical sentinel lymph node dissection (SLND). It also allowed for marking of the SLN in patients planned for PST and enabled tailored decision making in breast cancer recurrence.Lymph Node Dissection (SLND) is standard of care for diagnosing sentinel lymph node (SLN) status in patients with early breast cancer. Study aim was to determine whether the combination of Superparamagnetic iron oxide nanoparticles (SPIO) MRI-lymphography (MRI-LG) and a Magnetic-guided Axillary UltraSound (MagUS) with biopsy can allow for minimally invasive, axillary evaluation to de-escalate surgery. Patients were injected with 2 mL of SPIO and underwent MRI-LG for SN mapping. Thereafter MagUS and core needle biopsy (CNB) were performed. Patients planned for neoadjuvant treatment, the SLN was clipped and SLND was performed after neoadjuvant with the addition of isotope. During surgery, SLNs were controlled for signs of previous biopsy or clip. The primary endpoint was MagUS SLN detection rate, defined as successful SLN detection of at least one SLN of those retrieved in SLND. In 79 patients, 48 underwent upfront surgery, 12 received neoadjuvant and 19 had recurrent cancer. MagUS traced the SLN in all upfront and neoadjuvant cases, detecting all patients with macrometastases (n = 10). MagUS missed only one micrometastasis, outperforming baseline axillary ultrasound AUS (AUC: 0.950 vs. 0.508, p < 0.001) and showing no discordance to SLND (p = 1.000). MagUS provides the niche for minimally invasive axillary mapping that can reduce diagnostic surgery.
Highlights
Primary tumor biology and axillary status guide therapeutic decisions in breast cancer treatment [1,2]
It was demonstrated that accurate minimally invasive axillary staging can be achieved with a multimodal platform that can be modified to meet tailored patient needs
Sentinel Lymph Node Dissection (SLND) is not an indolent procedure and is related to short- and long-term morbidity such as postoperative pain, restricted shoulder range of motion, axillary web syndrome and lymphedema, as suggested in recent meta-analysis [13,14,30]. These findings indicate the need of establishing techniques for less invasive axillary staging that might result in less surgery, less subsequent postoperative complications and a reduction of costs and resources related with surgery [31,32]
Summary
Primary tumor biology and axillary status guide therapeutic decisions in breast cancer treatment [1,2]. The contrast will be taken up by the lymphatics and reach the SLNs and will subsequently be visualized by a radiological modality Several methods such as single-photon emission computed tomography (SPECT), tridimensional computed tomography lymphography (3D-CTLG) or contrast enhanced ultrasound with microbubbles (CEUS) have been evaluated as alternatives to surgery [17,18,19]. Most of these have shown promising results, but larger studies are missing and, complicated logistics, need for access to nuclear medicine facilities and demanding learning curves are restricting their introduction into clinical practice
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have