Abstract

We present a combined theoretical and experimental study of the electronic structure for CeRu2Al10 based on ab initio band structure calculations and x-ray photoemission spectroscopy (XPS) data. Our calculations were performed for the base unit cell and for the hypothetical unit cell which enables antiferromagnetic ordering. The stability of the magnetic phase was investigated within fixed spin moment calculations. When additional 4f correlations are not included in the LSDA + U approach, CeRu2Al10 exhibits an unstable magnetic configuration with the difference in total energy per unit cell between the weakly magnetic state and the non-magnetic one of the order ∼0.3 meV. We found that Coulomb correlations among 4f electrons, when they are included in the LSDA + U approach, stabilize the magnetic structure. In the weakly correlated system (small U) an antiferromagnetic (AFM) ground state with the lowest total energy is preferred. The situation is, however, the opposite when the 4f correlations are strong. In this case the ferromagnetic (FM) ground state is preferred. By comparing our calculations with the experimental data we conclude that the 4f correlations in CeRu2Al10 are weak. We also carried out a structural relaxation of atomic positions within the Cmcm unit cell and we found that the Al atoms exhibit noticeable displacement from their positions known from x-ray diffraction (XRD) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.