Abstract
The development of synthetic carriers for small interfering RNA (siRNA) and plasmids is crucial for effective gene therapy. In this study, we synthesized magnetic graphene oxide nanoflakes as carriers for siRNA delivery, with the goal of knockdown specific genes such as the green fluorescence protein (GFP). Our approach combined magnetically reduced graphene oxide with polyethylenimine (PEI) crosslinked to its surface using carbonyl diimidazole. To evaluate the adsorption capacity of the PEI-modified nanocomposite, we investigated its ability to bind two types of nucleic acids: short-hairpin (sh)RNA plasmids and siRNA targeting GFP. The nanocomposite exhibited significant adsorption, with maximum capacities of 426 ng/μg for shRNA and 71 ng/μg for siRNA, respectively. Simultaneous delivery of siRNA and shRNA using our designed nanocomposites was successfully achieved in human hepatoma and prostate cancer cells. Under magnetic guidance, the knockdown efficiencies reached 73.5 % in hepatoma cells for dual delivery of siRNA and shRNA. Our findings revealed that the nanocomplexes were internalized by the cells through a caveolae-dependent endocytosis mechanism. The demonstrated ability of the nanoflakes to efficiently transport siRNA and shRNA, with high loading capacity, controlled release, and magnetic targeting, resulted in effective GFP knockdown in vitro. These findings highlight the potential of magnetic graphene oxide nanoflakes as promising carriers for siRNA delivery and gene knockdown in therapeutic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.