Abstract
The objective of our study was to develop a novel nonviral gene silencing system using small interfering RNA (siRNA) or short hairpin RNA (shRNA) complexes using star vector (SV), which is a star-shaped, four-branched, cationic-nonionic-blocked copolymer, as the water-soluble delivery system. This vector was previously designed as a carrier for high-efficiency gene delivery of plasmid DNA. The lamin gene was used as the target for developing siRNAs. SV was shown to condense and interact with siRNAs to yield SV/siRNA polyion complexes with a diameter of ca. 90 nm and having considerable stability. By using these complexes, siRNA was successfully delivered to almost all human hepatocellular carcinoma cells used in this study, and both siRNAs and shRNAs could produce significant gene silencing in these cells without affecting cell viability. The silencing efficacy of these complexes was similar to that of commercially available high-efficiency siRNA transfection reagent (Darmafect-4). After injecting SV/siRNA complexes into mice, effective gene silencing was also observed in vivo in the liver and lung, suggesting that the SV/siRNA complexes were stable under in vivo conditions, and their transfection efficiency was retained after intravenous administration. Thus, SV was a potential carrier for siRNA and shRNA delivery in both in vitro and in vivo conditions; this finding suggests that it may offer a new clinical therapeutic approach in gene therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.